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A B S T R A C T

Recently, masked autoencoders have demonstrated their feasibility in extracting effective image and text
features (e.g., BERT for natural language processing (NLP) and MAE in computer vision (CV)). This study
investigates the potential of applying these techniques to vision-and-language representation learning in
the medical domain. To this end, we introduce a self-supervised learning paradigm, multi-modal masked
autoencoders (M3AE). It learns to map medical images and texts to a joint space by reconstructing pixels
and tokens from randomly masked images and texts. Specifically, we design this approach from three aspects:
First, taking into account the varying information densities of vision and language, we employ distinct masking
ratios for input images and text, with a notably higher masking ratio for images; Second, we utilize visual and
textual features from different layers for reconstruction to address varying levels of abstraction in vision and
language; Third, we develop different designs for vision and language decoders. We establish a medical vision-
and-language benchmark to conduct an extensive evaluation. Our experimental results exhibit the effectiveness
of the proposed method, achieving state-of-the-art results on all downstream tasks. Further analyses validate
the effectiveness of the various components and discuss the limitations of the proposed approach. The source
code is available at https://github.com/zhjohnchan/M3AE.
1. Introduction

Medical data is inherently multi-modal, including tabular data,
time-series data, imaging data, text data, and structured data (Acosta
et al., 2022; Moor et al., 2023). Among them, imaging and text data
are two critical ones, where for the former, radiography, magnetic
resonance imaging, and computed tomography are crucial for under-
standing the structural and functional aspects of the human body; for
the latter, radiology reports and medical texts provide critical insights
into the patient’s medical history, symptoms, and diagnoses. Mapping
the data to the joint space can lead to a holistic understanding of
medical images and texts. Yet, it is challenging due to the heterogeneity
of data of different modalities.

To address the challenge of understanding medical data, medical
vision-and-language pre-training (Med-VLP) has emerged as a crucial
technique. Med-VLP aims to learn generic representations from large-
scale medical image-text data, which can be transferred to various
medical vision-and-language tasks. These tasks include medical visual
question answering (Med-VQA), which requires answering questions
based on visual and textual information from medical image-text pairs;
medical image-text classification, which involves categorizing images
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and associated texts based on their medical conditions; and medical
image-text retrieval, which involves retrieving relevant medical images
and texts based on given queries. Med-VLP has become essential for
jointly understanding medical images and texts, especially given the
limited availability of large-scale labeled data and domain knowledge.

While vision-and-language pre-training (VLP) has received sus-
tained attention (Chen et al., 2020b; Huang et al., 2020; Kim et al.,
2021; Su et al., 2019; Tan and Bansal, 2019), the application of
this technique to the medical domain has been limited to a few
studies. For example, Li et al. (2020a) applied four VLP models,
namely LXMERT (Tan and Bansal, 2019), VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2020b), and PixelBERT (Huang et al., 2020),
to a medical image-text classification task, but found that the models
performed worse than in the general domain without incorporating
domain-specific information. To address this issue, Khare et al. (2021)
proposed to perform pre-training on medical image-text pairs to capture
medical knowledge. However, they only evaluated the approach on
Med-VQA and failed to explore its promising improvement. The most
related work to ours is Moon et al. (2021), which performed pre-
training of a Med-VLP model and demonstrated its effectiveness on
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various downstream tasks, but the pre-training was limited to chest
X-rays and was not performed in a self-supervised manner using di-
agnosis labels. Previous studies have mainly used convolutional neural
networks (CNNs) as their visual backbones, limiting their simplicity and
effectiveness and ignoring purely Transformer-based models (Vaswani
et al., 2017). Therefore, it is essential to develop an appropriate Med-
VLP approach, considering four perspectives: data (e.g., pre-training
corpus), models (e.g., purely Transformer-based models), objectives
(e.g., more suitable pre-training objectives), and evaluation (e.g., de-
signs of the downstream benchmark), to promote the application of
Med-VLP to medical data.

In this paper, we propose to map medical images and texts to a joint
space using a multi-modal masked autoencoder (M3AE) based on purely
Transformer-based models. Our approach is designed to learn cross-
modal domain-specific knowledge from large-scale medical image-text
datasets in a self-supervised manner without requiring fine-grained
annotations on either images or texts, making it highly applicable in
the medical domain. The M3AE works by randomly masking patches
of the input image and tokens of the input text and reconstructing
the missing pixels and tokens. We develop the M3AE design from
three perspectives. First, we use different masking ratios for the input
images and texts, considering the different information densities of
vision and language. Second, we select visual and textual features from
distinct layers to perform the construction, taking into account the
different levels of abstraction in vision and language. Third, we use two
different decoder designs for vision and language, where a Transformer
model and a multi-layer perceptron (MLP) are used for vision and
language decoding, respectively. We perform pre-training on two large-
scale medical image-text datasets, namely ROCO (Pelka et al., 2018)
and MedICaT (Subramanian et al., 2020), and evaluate the effective-
ness of our approach on a medical vision-and-language understanding
benchmark, which includes three tasks: Med-VQA, medical image-text
classification, and medical image-text retrieval. Experimental results
show that our approach outperforms previous studies on all down-
stream tasks. Furthermore, we conduct several analyses to examine the
effectiveness of different components and various pre-training settings
and to discuss the limitations of the proposed approach.

The contributions of this work are from three perspectives:

• Problem to be solved: We focus on a more general problem
in our paper, where the goal is to learn generic vision-and-
language representations for medical images and texts that can be
transferred to many downstream tasks. To this end, we design the
entire pipeline in the medical domain, including the pre-training
data, the model/algorithm, and the evaluation benchmark.

• Technical novelty: Technically, we propose a simple yet effective
approach for medical vision-and-language understanding through
several designs using a purely Transformer-based architecture.

• Effectiveness: Our proposed approach outperforms existing stud-
ies on all downstream tasks. Besides, we analyze different compo-
nents of the approach.

2. Related work

In this section, we review the literature related to three topics:
(i) medical vision-and-language tasks, (ii) general-domain vision-and-
language representation learning, (iii) masked language/image model-
ing, and (iv) medical-domain vision-and-language representation learn-
ing.

2.1. Medical vision-and-language tasks

There are many tasks in the medical domain involving both vision
and language modalities. In general, such tasks could be divided into
two types: vision-and-language understanding and vision-and-language
generation. For vision-and-language understanding, the most straight-
2

forward one is text-assisted image classification, which improves the
performance of medical image classification with extra information
(e.g., patient history and previous studies). For example, Li et al.
(2020a) and Monajatipoor et al. (2022) testified the performance of
existing vision-and-language models on the Chest X-ray disease diag-
nosis and showed that the textual modality improved the performance
significantly. Another typical task is medical visual question answer-
ing (Nguyen et al., 2019; Do et al., 2021; Seenivasan et al., 2022). This
task requires models to answer a medical question related to the image,
the application of which can improve the interaction between machines
and patients. Besides, medical image-text retrieval (Subramanian et al.,
2020) is also an important vision-and-language understanding task,
where connections between the text and figures are useful to enable
the retrieval of figures via textual queries and to produce systems that
are capable of analyzing and understanding medical images. For vision-
and-language generation, medical report generation (Shin et al., 2016;
Jing et al., 2018; Chen et al., 2020d; Liu et al., 2021a; Wang et al.,
2021; Yan et al., 2021; Najdenkoska et al., 2022) and text-to-image
synthesis (Chambon et al., 2022) are two popular tasks, where the
former aims to automatically generate a report for a given radiology
image and the latter targets at synthesizing medical images given a
description text.

2.2. Masked language/image modeling

Masked Language Modeling (MLM) aims to curate training samples
for text models from a large-scale unannotated corpus. One of the
early studies is Word2Vec (Mikolov et al., 2013), which is trained
to predict the center or neighboring words given the context. Then,
BERT (Devlin et al., 2019) with the Transformer architecture and
the MIM pretext task achieves great improvement in various tasks
by scaling up the pre-training scale (including the parameters of the
models and the number of training samples). After that, the paradigm
of natural language processing (NLP) was shifted to the pretrain-then-
finetune paradigm. Following BERT, different strategies (including data
and pretext tasks) for the improvement of MLM were proposed (Liu
et al., 2019; Yang et al., 2019; Clark et al., 2019; Dong et al., 2019).
While the masking ratio of 15% is the choice of most of the work, there
is also a study (Wettig et al., 2023) indicating that a larger masking
ratio is beneficial for larger models.

Following MLM, Masked Image Modeling (MIM) aims to learn effec-
tive visual representations via predicting the masked visual content in a
self-supervised manner, which can be traced back to ViT (Dosovitskiy
et al., 2020) and iGPT (Chen et al., 2020c). Subsequently, the BEIT
series (BEIT-1 (Bao et al., 2021) and BEIT-2 (Peng et al., 2022)) greatly
improve the performance of MIM in the downstream tasks by discreting
the continous image pixels to a sequence of visual tokens. Another
research line in MIM is to explore the reconstruction of the pixels
directly. The most classical work is MAE (He et al., 2021), where the
authors found that the key to pixel-target MIM is to use a large masking
ratio for images (i.e., 75% in their study). Afterwards, many studies are
starting to dive into the pixel/feature regression (Zhang et al., 2022b;
Wei et al., 2022c; Zhou et al., 2021; Xie et al., 2022; Wei et al., 2022a,b;
Huang et al., 2022; Gao et al., 2022; Dong et al., 2023; Chen et al.,
2023; Fang et al., 2023; Li et al., 2022; Wang et al., 2023).

2.3. Vision-and-language pre-training

Driven by the effectiveness of self-supervised pre-training approa-
ches in NLP (e.g., BERT Devlin et al., 2019) and computer vision (CV)
(e.g., SimCLR Chen et al., 2020a and MoCo He et al., 2020), there
is a growing interest in creating VLP techniques to tackle a broad
array of vision-and-language-related challenges. Generally, VLP meth-
ods fall into two groups based on the vision-and-language interplay:
dual-encoder and fusion-encoder. Present dual-encoder strategies can
be outlined by the following factors: (i) utilizing medium-scale cu-

rated image-text data (Radford et al., 2021), (ii) employing large-scale
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noisy image-text data (Jia et al., 2021), (iii) devising more intricate
image-text contrasts (Yao et al., 2022), (iv) implementing additional
single-modal contrastive learning (Mu et al., 2022). As for fusion-
encoder approaches, existing research can be divided according to these
three viewpoints: (i) Uni-modal encoders: various methods employ
different image features (for example, the region features Li et al.,
2019; Lu et al., 2019, patch embeddings Kim et al., 2021, and grid
features Huang et al., 2020) and unique text features (for instance,
statistic embeddings Kim et al., 2021, and dynamic embeddings Dou
et al., 2021); (ii) Multi-modal fusion modules: existing research utilized
the single-stream fusion scheme (Su et al., 2019; Li et al., 2020b) or
dual-stream fusion scheme (Tan and Bansal, 2019; Yu et al., 2021);
(iii) Pretext tasks: existing research investigates a range of pre-training
tasks, including masked language modeling (Li et al., 2019), masked
image modeling (Lu et al., 2019; Chen et al., 2020b), image-text
matching (Zhang et al., 2021).

2.4. Medical vision-and-language pre-training

As an application and extension of VLP to the medical field, Med-
VLP focuses on comprehending the content of medical images and texts.
This can be traced back to Zhang et al. (2022a) for dual-encoders
and Li et al. (2020a) for fusion-encoders. In the case of dual-encoders,
subsequent research (Huang et al., 2021; Müller et al., 2021; Wang
et al., 2022b) delved into global-local image-text contrastive learning
to obtain more detailed information from medical images and texts,
achieving top results in the medical image classification task. Con-
cerning fusion-encoders, Li et al. (2020a) explored the performance
of four vision-and-language models pre-trained in the general domain
on a disease classification task. Then MMBERT (Khare et al., 2021)
and MedViLL (Moon et al., 2021) performed pre-training on medical
image-text data before fine-tuning models on the downstream tasks.
Moreover, Chen et al. (2022) incorporated medical knowledge into
the pre-training process to boost performance on downstream medical
tasks.

2.5. The relationship to existing studies

The work most related to ours is BEIT-3 (Wang et al., 2022a). In
BEIT-3, the authors used the image tokenizer from BEIT-2 to discrete
the images so that a simple masked token modeling could be applied
to learning the joint space of images and texts. Besides, scaling up the
data and model scales is another important contribution to making the
model achieve great performance on a broad range of datasets/tasks.
We are different from BEIT-3 from three perspectives: (i) BEIT-3 used
an image tokenizer to discrete the image to a sequence of tokens as
the reconstruction target, whereas ours recovers the pixel directly;
(ii) BEIT-3 also recovers the masked image-only and text-only inputs,
which makes it good at encoding images and texts separately, whereas
ours only targets at the joint representations of images and texts;
(iii) BEIT-3 used large-scale data for representation learning, whereas
we can only gather a much smaller dataset in the medical domain.
Therefore, it could be seen that there is a huge difference between
the general and medical domains, and our study could be a proof-of-
concept of vision-and-language pre-training in the medical domain that
builds up the pipeline for medical vision-and-language pre-training.

In addition to the idea of the approach, we borrow the experience
from the general domain to develop our detailed implementation. In
specific, we decided on the masking ratios of our approach largely
based on the experimental findings from BERT in NLP and MAE in CV
(i.e., a masking ratio of 75% for images and 15% for texts). Besides, we
referred to their studies to choose the types of decoders for images and
3

texts. s
3. The proposed approach

In this section, we first formulate the problem to be solved in
Section 3.1. Then, the backbone model architecture is detailed in
Section 3.2. Finally, we introduce the multi-modal masked modeling
for mapping medical image-text to a joint space in Section 3.3.

3.1. Problem formulation

We employ the pre-training-and-fine-tuning methodology in the
context of medical vision-and-language comprehension. During the pre-
training phase, the framework establishes various pretext tasks to train
the model utilizing medical image-text pairs. Formally, given a medical
image 𝐼 and its associated descriptive text 𝑇 , the model’s training aims
to minimize the objective via

𝜃∗, 𝜃∗1 ,… , 𝜃∗𝑆 = arg min
𝜃,𝜃1 ,…,𝜃𝑆

𝑆
∑

𝑠=1
𝐿𝑠(𝑌𝑠,𝜃𝑠 (𝜃(𝐼, 𝑇 ))), (1)

where 𝑆 is the number of pretext tasks, 𝐿𝑠 are the loss functions of
pretext tasks, 𝜃𝑠 are the decoders with their parameters 𝜃1,… , 𝜃𝑆 , and
𝜃 is the backbone model with its parameters 𝜃. In the following sub-
sections, we detail the designs of 𝜃 in Section 3.2 and pretext tasks1 in
Section 3.3. During the fine-tuning phase, the learned model is applied
to performing different downstream tasks by exploiting the pre-trained
weights. A comprehensive overview of the proposed methodology is
depicted in Fig. 1.

3.2. The backbone model architecture 𝜃

Our backbone model can be divided into three key components:
the vision encoder for encoding the input image, the language encoder
for encoding the input text, and the multi-modal fusion module for
interacting with the extracted visual and textual features.

Vision encoder. For simplicity and effectiveness, we focus on purely
Transformer-based models and study the use of a vision Transformer
(ViT) for the vision encoder in this paper. Specifically, in ViT, an
image 𝐼 ∈ R𝐻×𝑊 ×𝐶 is first segmented into patches {𝑝1, 𝑝2,… , 𝑝𝑁},
where 𝐻 × 𝑊 is the image resolution, 𝐶 is the number of channels,
𝑝𝑛 ∈ R𝑃 2×𝐶 and 𝑃 × 𝑃 is the patch resolution. Subsequently, the
atches are flattened and linearly projected into patch embeddings via a
inear transformation 𝐸𝑣 ∈ R𝑃 2𝐶×𝐷, with an additional learnable token

embedding 𝑝𝐼 ∈ R𝐷 introduced for visual information aggregation.
Afterwards, the input representations are obtained by summing up
the patch embeddings and learnable 1D position embeddings 𝐸𝑣

𝑝𝑜𝑠 ∈
R(𝑁+1)×𝐷:

𝑋𝑣 = [𝑝𝐼 ; 𝑝1𝐸𝑣; 𝑝2𝐸𝑣; ...; 𝑝𝑁𝐸𝑣] + 𝐸𝑣
𝑝𝑜𝑠. (2)

Finally, 𝑋𝑣 is input into a transformer model comprising 𝑁𝑣 Trans-
former layers to acquire the contextualized image representations 𝐻𝑣 =
[ℎ𝑣𝐼 ;ℎ

𝑣
1;ℎ

𝑣
2; ...;ℎ

𝑣
𝑁 ].

Language encoder. In the language encoder, we follow BERT (Devlin
et al., 2019) to tokenize the input text to subword tokens {𝑤1, 𝑤2,… ,
𝑤𝑀} by WordPiece (Wu et al., 2016), where the tokens 𝑤𝑚 ∈ R𝑉 are
epresented in one-hot form and 𝑉 is the vocabulary size. Then the
okens are linearly projected into embeddings through a linear transfor-
ation 𝐸𝑙 ∈ R𝑉 ×𝐷. Afterwards, a start-of-sequence token embedding

𝑤𝑇 ∈ R𝐷 and a special boundary token embedding 𝑤𝑆𝐸𝑃 ∈ R𝐷 are
added to the text sequence. Therefore, the text input representations

1 We mainly discuss the design of masked autoencoders and omit the
escription of image-text matching that commonly adopted in previous VLP
tudies.
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Fig. 1. The overall architecture of our proposed approach, where the masked inputs, uni-modal encoders, the multi-modal fusion module, and decoders are shown in gray dash
boxes. Three key components are shown in three colored dash boxes. Note that the input image and text are masked separately in different forward processes.
are computed via summing up the token embeddings and text position
embeddings 𝐸𝑙

𝑝𝑜𝑠 ∈ R(𝑀+2)×𝐷:

𝑋𝑙 = [𝑤𝑇 ;𝑤1𝐸
𝑙; ...;𝑤𝑀𝐸𝑙;𝑤𝑆𝐸𝑃 ] + 𝐸𝑙

𝑝𝑜𝑠. (3)

Similarly, 𝑋𝑙 is fed into a transformer model with 𝑁𝑙 Transformer lay-
ers to obtain the contextualized text representations 𝐻 𝑙 = [ℎ𝑙𝑇 ;ℎ

𝑙
1;ℎ

𝑙
2; ...;

ℎ𝑙𝑀 ;ℎ𝑙𝑆𝐸𝑃 ].

Multi-modal fusion module. We adopt the co-attention mechanism in
the multi-modal fusion module to fuse the contextualized representa-
tions from images and texts. In detail, the multi-modal fusion module
consists of two Transformer models, each of which is a stack of 𝑁𝑚
Transformer layers. In each Transformer layer, there are three sub-
layers, i.e., a self-attention sub-layer, a cross-attention sub-layer, and
a feedforward sub-layer. The attention mechanism is applied in the
self-attention and cross-attention sub-layers, and it is defined as

ATTN(𝑄,𝐾, 𝑉 ) = sof tmax

(

𝑄𝐾⊤
√

𝑑𝑘

)

⋅ 𝑉 , (4)

where 𝑑𝑘 is the dimension of 𝐾. In the self-attention sub-layer, the
representations interact within modalities:

𝐻𝑣𝑠 = ATTN(𝐻𝑣,𝐻𝑣,𝐻𝑣),

𝐻 𝑙𝑠 = ATTN(𝐻 𝑙 ,𝐻 𝑙 ,𝐻 𝑙).
(5)

In the cross-attention sub-layer, the representations interact across
modalities to integrate cross-modal information into their representa-
tions:
𝐻𝑣𝑐 = ATTN(𝐻𝑣𝑠,𝐻 𝑙𝑠,𝐻 𝑙𝑠),

𝐻 𝑙𝑐 = ATTN(𝐻 𝑙𝑠,𝐻𝑣𝑠,𝐻𝑣𝑠).
(6)

Finally, 𝐻𝑣𝑐 and 𝐻 𝑙𝑐 are input to the feedforward sub-layer (i.e., an
MLP) to obtain the multi-modal representations 𝑍𝑣 = [𝑧𝑣𝐼 ; 𝑧

𝑣
1; 𝑧

𝑣
2; ...; 𝑧

𝑣
𝑁 ]

for vision and 𝑍𝑙 = [𝑧𝑙𝑇 ; 𝑧
𝑙
1; 𝑧

𝑙
2; ...; 𝑧

𝑙
𝑀 ; 𝑧𝑙𝑆𝐸𝑃 ] for language.

3.3. Multi-modal masked autoencoders

The concept of masked autoencoders has seen tremendous success
in natural language processing, exemplified by models like BERT and,
more recently, in computer vision with models such as MAE (He et al.,
2021). In the broader domain of vision and language pre-training
(VLP), existing research (Dou et al., 2021; Kim et al., 2021) has primar-
ily focused on recovering the original tokens of masked text, a process
known as masked language modeling (MLM). However, it has been
shown that attempting to reconstruct the original signals of masked
4

images, referred to as masked image modeling (MIM), can negatively
impact pre-training performance. This disparity in performance can be
attributed to the differing characteristics of vision and language, neces-
sitating specific design adaptations for masked autoencoders to function
effectively in a multi-modal context. To address these challenges, we
propose three essential and straightforward design modifications that
can help bridge the gap between the two modalities and optimize the
performance of masked autoencoders in both vision and language tasks.

Masking strategy. The information density between vision and language
differs significantly. Languages, which are information-dense messages
created by humans, can present a sophisticated language understanding
task by predicting just a few held-out tokens. In contrast, images
exhibit spatial redundancy, meaning that a missing patch can often be
easily reconstructed from visible neighboring patches. Consequently,
we employ a random sampling approach with a much higher masking
ratio for images (75%) than texts (15%), where we decide the value of
masking ratios mainly according to the experimental findings in BERT
in NLP and MAE in CV. This strategy helps remove image redundancy
and enables the model to extract valuable features from images and
texts effectively.

Representation selection for reconstruction. Images and texts are ab-
stracted at different semantic levels; image pixels are at a lower seman-
tic level than text tokens. In our model, we aggregate their representa-
tions layer-by-layer using a hierarchical approach. To ensure that the
final learned representations of images are semantically rich, we use the
intermediate outputs of the multi-modal fusion module (specifically,
the visual outputs from the 𝑘th Transformer layer, denoted as 𝑍𝑣𝑘) for
the low-level construction task, MIM. This allows the model to focus
on capturing more abstract features from the images. For MLM, we
retain the final output 𝑍𝑙 for predicting tokens since reconstructing the
missing words requires a higher semantic information level.

Decoder designs. The vision and language decoders’ primary function
is to map the high-level semantic representations 𝑍𝑣𝑘 and 𝑍𝑙 back to
their original input forms (image and text, respectively). For the vision
decoder, the output is required to be in pixel space, which inherently
has a lower semantic level. To achieve this, we introduce a Transformer
model as the decoder, designed to map the high-level 𝑍𝑣𝑘 representa-
tions to lower semantic representations. This enables the vision decoder
to perform low-level reconstruction, effectively recreating the original
images. The language decoder’s targets (words) are abstracted at a
higher semantic level, making the design more straightforward by using
an MLP. The MIM loss is calculated using the mean squared error (MSE)

between the reconstructed and original images in pixel space, while the
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MLM loss is computed as the negative log-likelihood loss for the masked
tokens.

It is essential to note that the MLM and MIM tasks are performed
separately in different forward procedures to ensure the model’s ef-
fectiveness in learning from both modalities. Specifically, instead of
feeding masked images and masked texts (i.e., Input: Image (masked)
and Texts (masked)) to the model in one forward process, we feed
masked images and texts (i.e., Input: Image (masked) and Texts (un-
masked)) to the model to obtain the MIM loss and feed images and
masked texts to (i.e., Input: Image (unmasked) and Texts (masked)) to
get the MLM loss. The advantage is that we can force the model to
learn the relationship between the visual and textual spaces and map
them to the joint spaces. For example, if a phrase ‘pleural effusion‘ is

asked in the text, the model can learn to ‘‘look at’’ the image to find
he clue to recover the masked texts. We have revised the corresponding
escription to make it more clear.

. Experimental settings

In this section, we detail the pre-training setup in Section 4.1 and
he downstream evaluation in Section 4.2.

.1. Pre-training setup

Our experiments were conducted on two publicly available datasets,
.e., ROCO (Pelka et al., 2018) and MedICaT (Subramanian et al.,
020). The ROCO dataset consists of over 81,000 medical image-text
airs, where each image is accompanied by a corresponding textual
escription. The MedICaT dataset, on the other hand, contains over
17,000 medical images with captions and inline textual references.
o train and evaluate our models, we used ROCO’s official splits, while

n MedICaT, we randomly sampled 1000 images for validation and
000 images for testing and used the remaining images for training.
or pre-training, we used the training set of both datasets to train our
odels with the pre-training tasks presented in Section 3 in addition

o the common image-text matching task (Chen et al., 2020b), which
ims to predict whether a given image and its textual description are
emantically aligned.

The architecture we used for the vision encoder was CLIP-ViT-
(Radford et al., 2021), while RoBERTa-base (Liu et al., 2019) was

sed for the language encoder. The multi-modal fusion module was
omposed of 6 Transformer layers with a hidden state dimension of 768
nd 12 heads. For all pre-training experiments, we trained the models
ith the AdamW optimizer (Loshchilov and Hutter, 2018) for 100,000

teps. The learning rates for uni-modal encoders (i.e., the vision encoder
nd the language encoder) were set to 1e-5, while the learning rate for
he multi-modal fusion module was set to 5e-5. We set the warm-up
atio to 10% and used a linear learning rate scheduler after warm-up.
e used center-crop to resize each image to 288 × 288.

.2. Vision-and-language transfer tasks

The evaluation of our models was conducted on three medical
mage-text understanding tasks: medical visual question answering
Med-VQA), medical image-text classification, and medical image-text
etrieval. These tasks evaluate the ability of our models to understand
he relationship between medical images and their associated textual
escriptions and to perform different downstream tasks based on this
5

nderstanding.
Medical visual question answering. This task evaluates the ability of
our models to answer clinical-related questions according to medical
images. To train and evaluate our models, we used three publicly
available datasets: VQA-RAD (Lau et al., 2018), SLAKE (Liu et al.,
2021c), and MedVQA-2019 (Abacha et al., 2019), and we adopted
their official dataset splits. In the VQA-RAD and SLAKE datasets, the
questions are categorized into two types: closed-ended and open-ended.
Closed-ended questions have a fixed set of answer choices, while open-
ended questions require the model to generate an answer from scratch.
To fine-tune the models on this task, we regard it as a multi-label
classification task and feed the concatenation of the image and text rep-
resentations to a two-layer MLP to predict the corresponding answer.
The models are trained with a binary cross-entropy loss with a batch
size of 64.

Medical image-text classification. This task requires our models to pre-
dict the label associated with the given medical image and its cor-
responding text. To train and evaluate our models on this task, we
used the MELINDA dataset (Wu et al., 2021), a biomedical experiment
method classification dataset with the official split. To fine-tune the
models on this task, we learn a two-layer MLP on top of the concatena-
tion of the image and text representations. We train the models with a
cross-entropy loss with a batch size of 16 over a maximum of 20 epochs.

Medical image-text retrieval. The medical image-text retrieval task con-
sists of two subtasks: image-to-text (I2T) retrieval and text-to-image
(T2I) retrieval. In the I2T subtask, the goal is to retrieve the most
relevant texts from a large pool of texts given an image. Conversely,
the T2I subtask aims to retrieve the most relevant images given a text
query. We trained and evaluated our models on the official split of
the ROCO dataset. To fine-tune the models on this task, we initialize
the similarity score head from the pre-trained ITM head. The model
is tuned with cross-entropy loss to maximize the scores on positive
pairs with 15 random texts sampled as negative samples with a batch
size of 256 over a maximum of 10 epochs. During the evaluation, we
sample 2,000 image-text pairs from the ROCO test set and report the
results on the sampled 2,000 image-text pairs due to the large time
complexity of the ranking process.2 For this task, we adopt two settings
for evaluating the models (similar to the studies (Kim et al., 2021;
Dou et al., 2021) in the general domain). Specifically, in the zero-
shot setting, we directly applied the pre-trained models to perform the
image-to-text/text-to-image retrieval task without further fine-tuning;
In the fine-tuning setting, we train the model specific for the retrieval
task with its corresponding training samples and then evaluate the
fine-tuned model.

For the metrics, we selected them based on the types of the tasks.
For the Med-VQA and medical text-image classification tasks, we eval-
uated the models based on their accuracy. On the other hand, for the
retrieval task, we used Recall@K (K = 1, 5, 10) as our evaluation
metric. We ran each experiment three times with different random
seeds and reported the mean value of the corresponding metric(s).

To better demonstrate the effectiveness of the proposed approach,
we compare our approach with the following approaches:

• MFB (Yu et al., 2017) is the classical approach in general-domain
visual question answering through Multi-modal Factorized Bilin-
ear (MFB) pooling to combine multi-modal features.

• SAN (Yang et al., 2016) is another classical architecture in general-
domain visual question answering that introduced the stacked
attention mechanism.

• BAN (Kim et al., 2018) proposed bilinear interactions among
visual and textual information and achieved promising results on
the multi-modal tasks.

2 The time complexity of the ranking process is 𝑂(𝑁2), where 𝑁 is the
sample number.
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Table 1
Comparisons of our proposed approach with previous studies on the test sets of three Med-VQA datasets with respect to the accuracy metric, where we detail the close-set and
open-set results for VQA-RAD and SLAKE.

Methods VQA-RAD SLAKE MedVQA-2019

Open Closed Overall Open Closed Overall Overall

MFB (Yu et al., 2017) 14.50 74.30 50.60 72.20 75.00 73.30 –
SAN (Yang et al., 2016) 31.30 69.50 54.30 74.00 79.10 76.00 –
BAN (Kim et al., 2018) 37.40 72.10 58.30 74.60 79.10 76.30 –

MEVF-SAN (Nguyen et al., 2019) 49.20 73.90 64.10 75.30 78.40 76.50 68.90
MEVF-BAN (Nguyen et al., 2019) 49.20 77.20 66.10 77.80 79.80 78.60 77.86
CPRD-BAN (Liu et al., 2021b) 52.50 77.90 67.80 79.50 83.40 81.10 –

M3AE (Ours) 67.23±1.41 83.46±1.32 77.01±0.33 80.31±1.23 87.82±0.50 83.25±0.92 79.87±0.19
Table 2
Results on the Med-ITC task (i.e., the MELINDA
dataset) to compare with the state-of-the-art methods.

Method Accuracy

ResNet-101 (He et al., 2016) 63.84
LSTM (Hochreiter and Schmidhuber, 1997)59.20
RoBERTa (Liu et al., 2019) 75.40
SciBERT (Beltagy et al., 2019) 77.70
NLF (Wu et al., 2021) 76.60
SAN (Yang et al., 2016) 72.30

M3AE (Ours) 78.50±1.04

Fig. 2. Accuracy v.s. Different layers of representations for performing masked image
modeling (MIM) on the VQA-RAD test set.

• MEVF (Nguyen et al., 2019) targeted medical visual question
answering and proposed to use the unsupervised denoising auto-
encoder and the supervised meta-learning to overcome the data
scarcity problem in the medical domain.

• CPRD (Liu et al., 2021b) is the state-of-the-art approach in med-
ical visual question answering, which proposed to use both con-
trastive learning and representation distillation to boost the per-
formance of medical visual question answering.

• ViLT (Kim et al., 2021) is a study from general-domain vision-
and-language pre-training that proposed to use a simple unified
model for representation learning.

• METER (Dou et al., 2021) conducted extensive empirical stud-
ies to explore the effects of different components in vision-and-
language pre-training and designed a state-of-the-art scheme.

5. Experimental analyses

In this section, we firstly compare the proposed approach with exist-
6

ing studies across several datasets and tasks in Section 5.1. Afterwards,
we do in-depth quantitative analyses in Section 5.2 and Section 5.3 and
we conduct qualitative analyses in Section 5.4. Finally, we analyze the
limitations of the proposed approach in Section 5.5.

5.1. Main results

The main experimental results on all downstream tasks are shown
in Table 1, 2, 3, where our proposed approach achieves state-of-the-art
results on all datasets. In the Med-VQA task, our approach outperforms
the advanced CPRD-BAN approach by 14.7% and 5.5% in terms of
accuracy for open-ended and closed-ended questions on the VQA-RAD
dataset, respectively. Furthermore, it achieves overall improvements of
2.1% and 2.0% on the SLAKE and VQA-2019 datasets, respectively.
For medical image-text classification, our method outperforms previous
uni-modal and multi-modal methods under the non-continued pre-
training setting, where it outperforms NLF by approximately 1.9%. In
the medical image-text retrieval task, the proposed approach outper-
forms previous studies by a large margin in the zero-shot (ZS) and
fine-tuning (FT) settings.

5.2. Ablation study

To evaluate the effectiveness of each component we proposed, we
conducted an ablation study on the test set of VQA-RAD without any
loss of generation. Our study involved analyzing the contributions of
different components of our approach, and the results are presented in
Table 4. We observed several key findings from the results. Firstly, we
found that using only MIM as the pre-training objective did not lead
to any significant improvement. This was evident from the comparison
between the first and second rows in Table 4. Secondly, we found that
incorporating MLM as one of the pre-training objectives (i.e., the third
and fourth rows) resulted in considerably better performance compared
to the cases without MLM (i.e., the first and second rows). Finally,
our proposed M3AE, combining both MIM and MLM as objectives,
achieved the best performance among all the evaluated approaches.
We attribute this success to the fact that M3AE can implicitly model
the critical mappings between medical images and texts by utilizing
both MIM and MLM objectives, thereby facilitating the learning of
multi-modal representations. Overall, our ablation study demonstrates
the effectiveness of all components of M3AE in addressing the Med-
VQA task and highlights the importance of incorporating multiple
pre-training objectives for better performance.

5.3. Effects of different MIM layers

We conducted a thorough analysis to evaluate the impact of repre-
sentations from different layers on MIM. To this end, we pre-trained
our model using representations from layers 0 to 6 and analyzed their
performance on MIM tasks, as depicted in Fig. 2. Our analysis yielded
two key observations that shed light on the effectiveness of different
layers in MIM pre-training. First, we found that using representations

from layer 0, corresponding to visual features without any textual
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Table 3
Results on the image-to-text retrieval and text-to-image retrieval tasks (i.e., the ROCO dataset) to compare with the state-of-the-art methods,
where the zero-shot and fine-tuned results are shown.
Methods Text-to-image Retrieval Image-to-text Retrieval

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

ViLT (Kim et al., 2021) 9.75 28.95 41.40 11.90 31.90 43.20
METER (Dou et al., 2021) 11.30 27.25 39.60 14.45 33.30 45.10

M3AE (Ours) (Zero-shot) 19.05 47.75 61.35 19.10 45.60 61.20
M3AE (Ours) (Fine-tuning) 22.20 52.50 66.65 22.90 51.05 65.80
Fig. 3. Illustrations of Med-VQA examples from the models pre-trained with MLM and MLM+MIM on the VQA-RAD test set, where the upper and middle rows refer to chest
X-ray and CT cases, respectively. The bottom row refers to some failure cases of MLM+MIM.
Table 4
Ablation study of masked image modeling (MIM) and masked language modeling
(MLM) on the VQA-RAD test set.

ID MIM MLM Open Closed Overall

1 ✗ ✗ 24.67 80.78 58.48
2 ✓ ✗ 22.41 79.17 56.56
3 ✗ ✓ 67.04 81.99 76.05
4 ✓ ✓ 67.23 83.46 77.01

information, resulted in the worst performance. This observation under-
scores the vital role of text information in performing MIM effectively.
Second, we found that using representations from the intermediate
layer (i.e., layer 3) led to the best results. This observation suggests
that utilizing lower-level representations for MIM facilitates capturing
more hierarchical information in images and texts and generating
higher semantic-level representations, which is beneficial for represen-
tation learning. Overall, our analysis provides valuable insights into
effectively utilizing different layers in MIM pre-training.

5.4. Qualitative analysis

To further validate the efficacy of our approach, we performed a
qualitative analysis of several Med-VQA cases on the VQA-RAD test set,
as presented in Fig. 3. According to the first two rows, our findings
7

demonstrate that the MLM+MIM model was able to correctly answer
all ‘‘yes/no’’ questions presented in the first two columns, whereas the
MIM model was only able to answer about half of them correctly. In
the middle two columns, where the questions were organ- or region-
related, the MIM model was only able to correctly answer one case,
while the MLM+MIM model was able to handle all of them. Lastly,
in the last two columns, which consisted of more difficult counting
or searching-related questions, the MLM+MIM models performed well
in correctly answering them, while the MIM model failed to do so.
This qualitative analysis illustrates that pre-training with MLM+MIM
can enable the model to learn more intricate and nuanced mappings
between images and texts, which can enhance the overall performance
of the model. In addition, we also show the failure cases in the bottom
row of Fig. 3. In these instances, the MLM+MIM setting produced
incorrect answers, whereas the MIM setting answered correctly in some
cases, indicating the limitations of our model.

Furthermore, we used Grad-CAM (Selvaraju et al., 2017) to generate
attention maps that show where our model focuses its attention when
answering questions in the VQA-RAD dataset with CT (the top row)
and MRI (the bottom row) modalities. The attention maps are shown in
Fig. 4, along with corresponding questions for each example. According
to the first two rows, the maps illustrate the interpretability of our
proposed method. In the first three examples, the questions ask about
specific organs or regions, and our model properly focuses on those
parts. For example, the model identifies the ‘‘costophrenic angles’’,
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Fig. 4. Illustrations of attention maps of chest X-ray and CT cases generated by our best-performing model on the VQA-RAD test set, paired with the corresponding questions and
answers, where the first two rows contain the well-learned attention mappings and the last row shows the failure cases.
Table 5
Limitation investigation, where we show the gap between two types of pre-trained vision-and-language models: (i) Dual-Encoder: better for uni-modal tasks in general; (ii)
Fusion-Encoder: better for multi-modal tasks in general. Besides, those models pre-trained without using texts (denoted as ‘‘w/o Text Information’’) are also listed for comparison.
1%, 10%, 100% refer to the different portions of training data.

Type Model CheXpert (AUC) RSNA (AUC)

1% 10% 100% 1% 10% 100%

w/o Text Information Random Init. 56.10 62.60 65.70 58.90 69.40 74.10
ImageNet Init. 74.40 79.70 81.40 74.90 74.50 76.30

Dual-Encoder
ConVIRT (Zhang et al., 2022a) 85.90 86.80 87.30 77.40 80.10 81.30
GLoRIA (Huang et al., 2021) 86.60 87.80 88.10 86.10 88.00 88.60
MGCA (Wang et al., 2022b) 88.80 89.10 89.70 89.10 89.90 90.80

Fusion-Encoder M3AE (Ours) 84.00 86.42 88.87 86.66 88.04 89.52
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‘aortopulmonary window’’, and ‘‘the left side’’ as relevant areas to
nswer the questions. In the new three examples, the questions are
uery-related, causing the model to focus on both sides of the chest
-ray images to capture more global information. Similarly, for the

ollowing three examples of MRI images, the model focuses on almost
ll parts of the images. In the last three cases, the questions are more
ommon and can be answered with common features of the imaging
odality. Consequently, the model pays less attention to the images.
owever, there are still some failure cases where the model focuses on

he discrete parts, as illustrated in the bottom row of Fig. 4.

.5. Limitation analysis

To provide a further reference for future research, we investigate
he limitations of the proposed approach. Practically, there exist two
ypical types, i.e., the fusion-encoder type and the dual-encoder type,
epending on whether a heavy fusion module is used. It has been
bserved from previous studies (Bao et al., 2022; Singh et al., 2022)
hat the former is superior at multi-modal tasks owing to the sufficient
nteraction between modalities; the latter is good at uni-modal and
ross-modal tasks due to the single-modality encoding ability. Our
roposed M3AE belongs to the fusion-encoder type with a multi-modal
usion module.
8

o

To investigate the limitations of M3AE, we transfer the pre-trained
odels to medical image classification tasks on two popular bench-
ark datasets (e.g., CheXpert (Irvin et al., 2019) and RSNA Pneu-
onia (Shih et al., 2019)). We follow Zhang et al. (2022a), Huang

t al. (2021) used different portions of training data to testify the
ransferring ability, with the results reported in Table 5. There are sev-
ral observations. First, domain-specific and text-assisted pre-training
an boost the performance of downstream tasks, where dual-encoder
nd fusion-encoder models outperform the random-initialization and
mageNet-initialization models to a large extent. This owes to the
omain knowledge from medical images and texts can be modeled
nd learned during the pre-training process. Second, when the training
ata is limited (e.g., 1%), it could be observed that dual-encoder
odels achieve better results due to the smaller gap between pre-

raining and transferring. The reason behind this is that the visual and
extual information is not fused in the pre-training procedure for dual-
ncoder models. Thus, the vision and language encoders could be used
n a separate way when transferring to downstream uni-modal tasks.
hird, the performance gap of dual-encoder and fusion-encoder models
arrows as the number of training data increases when observing the
erformance of different models on both datasets. In the meantime,
e conducted an additional experiment to validate the performance
f MGCA in the VQA-RAD dataset. Specifically, we replace the vision
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encoder and language encoder in our framework with the pre-trained
MGCA ones and then directly fine-tune the model. The result in the
VQA-RAD test set is 73.17. This observation might be explained by the
fact that fusion-encoder models (like our model) are equipped with a
fusion layer to fuse the information from different modalities in the
pre-training stage, which makes it better at the tasks requiring the joint
understanding of vision and language.

Therefore, in the future, the unification of dual-encoder and fusion-
encoder models could be further studied, where the characteristics of
both types of models could be integrated, and the two types of models
could facilitate each other.

6. Conclusion

This paper explores the potential of utilizing massive medical image-
text data to improve medical vision-and-language understanding. Such
data provides valuable context and structural information, which can
significantly enhance the ability of models to understand medical
images and text. To this end, we propose a simple yet effective ap-
proach called multi-modal masked autoencoders (M3AE), designed
to pre-train models on large-scale medical image-text pairs. Our ap-
proach incorporates three critical design choices, including masking
ratios, representation selection for reconstruction, and decoder designs,
which are carefully crafted to optimize the performance of the pre-
training process. To comprehensively evaluate the effectiveness of our
approach, we introduce a medical vision-and-language understanding
benchmark consisting of three tasks: medical visual question answering
(Med-VQA), medical image-text classification, and medical image-text
retrieval. Experimental results on various datasets demonstrate that our
approach achieves state-of-the-art performance across all tasks, sur-
passing existing approaches by a significant margin. Overall, our work
provides a contribution to the field of medical vision-and-language
understanding, demonstrating the potential of utilizing multi-modal
data for enhancing the performance of models in this domain.
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